Ultrafast structural and isomerization dynamics in the Rydberg-exited quadricyclane: norbornadiene system.

نویسندگان

  • Fedor Rudakov
  • Peter M Weber
چکیده

The quadricyclane-norbornadiene system is an important model for the isomerization dynamics between highly strained molecules. In a breakthrough observation for a polyatomic molecular system of that complexity, we follow the photoionization from Rydberg states in the time-domain to derive a measure for the time-dependent structural dynamics and the time-evolving structural dispersion even while the molecule is crossing electronic surfaces. The photoexcitation to the 3s and 3p Rydberg states deposits significant amounts of energy into vibrational motions. We observe the formation and evolution of the vibrational wavepacket on the Rydberg surface and the internal conversion from the 3p Rydberg states to the 3s state. In that state, quadricyclane isomerizes to norbornadiene with a time constant of τ(2) = 136(45) fs. The lifetime of the 3p Rydberg state in quadricyclane is τ(1) = 320(31) and the lifetime of the 3s Rydberg state in norbornadiene is τ(3) = 394(32).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photochemical tuning of light emission in a conjugated polymer containing norbornadiene units in the main chain.

A conjugated alternating copolymer containing norbornadiene and bis(ethynylene)phenylene units was prepared by the Cassar-Heck-Sonogashira cross-coupling reaction. Its electroluminescence was tested in a device, and its fluorescence colour could be tuned by light-induced norbornadiene-quadricyclane isomerization.

متن کامل

Low Molecular Weight Norbornadiene Derivatives for Molecular Solar‐Thermal Energy Storage

Molecular solar-thermal energy storage systems are based on molecular switches that reversibly convert solar energy into chemical energy. Herein, we report the synthesis, characterization, and computational evaluation of a series of low molecular weight (193-260 g mol(-1) ) norbornadiene-quadricyclane systems. The molecules feature cyano acceptor and ethynyl-substituted aromatic donor groups, l...

متن کامل

Short Communication Steric Effect Studies on Solar Energy Storage of Norbornadiene- Quadracyclane System: Dft Calculations

The aim of this research is to determine the possible solar energy storage in the norbornadiene (1) / quadricyclane (2) system, through involving steric effects on various position of carbon C1, C2 or C7 for 1 and 2; calculating the corresponding energies at B3LYP/6-311G** level of theory. The extent of the solar energy storage is the least for 11-i-Pr (-21.018), 12-t-Bu (-22.525) and 17-i-Pr (...

متن کامل

Catalysis of the Quadricyclane to Norbornadiene Rearrangement by SnCl2 and CuSO4

Ab initio and density-functional theory (DFT) calculations have been used to investigate the model rearrangements of quadricyclane to norbornadiene catalysed by single CuSO4 and SnCl2 molecules. The isolated reactions with the two molecular catalysts proceed via electron-transfer catalysis in which the hydrocarbon is oxidised, in contrast to systems investigated previously in which the substrat...

متن کامل

Comparative Ab-Initio Study of Substituted Norbornadiene-Quadricyclane Compounds for Solar Thermal Storage

Molecular photoswitches that are capable of storing solar energy, so-called molecular solar thermal storage systems, are interesting candidates for future renewable energy applications. In this context, substituted norbornadiene-quadricyclane systems have received renewed interest due to recent advances in their synthesis. The optical, thermodynamic, and kinetic properties of these systems can ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 136 13  شماره 

صفحات  -

تاریخ انتشار 2012